

American Journal of Software Engineering and Applications
2014; 3(5): 63-67

Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20140305.12

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Model-based approach to design web application testing
tool

Dalila Souilem Boumiza
1
, Amani Ben Azzouz

1
, Salma Boumiza

2

1Applied Computer Science Department, National Engineering School of Sousse, Sousse, Tunisia
2Computer Science Department, Technical University of Sofia, Sofia, Bulgaria

Email address:
Dalila.souilem@yahoo.fr (D. S. Boumiza), amanibenazzouz@yahoo.com (A. B. Azzouz), salma.boumiza@yahoo.com (S. Boumiza)

To cite this article:
Dalila Souilem Boumiza, Amani Ben Azzouz, Salma Boumiza. Model-Based Approach to Design web Application Testing Tool. American

Journal of Software Engineering and Applications. Vol. 3, No. 5, 2014, pp.63-67. doi: 10.11648/j.ajsea.20140305.12

Abstract: Software engineering is a systematic approach defined as a science of industrial engineering that measures the

practical methods and working process of the software engineers. This approach is based on analyzing, designing, assessment

implementing testing and reengineering processes of given software All those phases are very important and have a specific role

in SE’s cycle, especially software testing that acts as a significant element in this cycle and it represents also a fundamental key

for software quality assurance. Software testing has as goal to test the software performance by measuring the gap between the

expected behavior of the software under test and the test results. This comparison allows the tester to analyze errors and bugs in

order to fix them and develop the software performance. As a critical factor in SQA, software testing is considered like a

definitive review of the tool’s specification: it permits the tester to redesign the tool specification after the test in case of failure.

This procedure is also applied on web applications, in similar ways to obtain the same goal: applications quality assurance, but

the web applications are more complicated to be tested because of the interaction of the application with the rest of the distributed

system. In fact, in more precisely terms, web application testing is a process that measures the functional and non functional

proprieties of a given web application to analyze its performance in order to fix errors or even to reach a better level of the

application under test. The demand on web applications or generally on software testing tools groups up with the increase in

applications or software failures and cost.

Keywords: Software Testing Tools, Software Quality Assurance, Web Application, Model-Based Testing

1. Introduction

The main idea of this paper is trying to improve the popular

existing approach of testing web applications. In fact the most

used technique to test web applications is the approach record

and replay but we have proved that it is an unreliable

technique so that an alternative solution must be taken. This

settlement is the model based testing technique, and our

project will be based in this fundamental perspective.

In fact, model based testing tool is an existing solution, but

is it still a new approach that just some tools support. Our goal

is to develop a tool that supports this technique and at the same

time is simple and easy to be used by a regular user thanks to a

graphical user interface GUI.

Our GUI will form a simple way to users to test web

scenarios through the new “model-based testing” technique

introducing a new and a simple way to perform test cases.

2. Record and Replay Approach [1]

This technique, as its name indicates, consists in recording a

scenario from a web application then trying to replay it again

in order to extract failure cases and to ensure right ones.

A web scenario is a group of a finite number of actions that

the user can do manually. This group includes any action that

can be performed by the mouse from a web page displayed in

a browser like: clicking a button, clicking a link, filling a text

field, dragging and dropping

The Scenario is recorded step by step, which means action

after another, to form a test case. After being registered by the

tool, this test case can be replayed so that the user can observe

the generated results after the test execution and analyze them.

Most of web testing tools apply the “record/replay”

function to create a test scenario, by following those steps:

The user opens the Website to be tested, activates the record

64 Dalila Souilem Boumiza et al.: Model-Based Approach to Design web Application Testing Tool

function, navigates into the website and select the desired

actions, stops the record

The program saves the recorded actions as a file that can be

opened at any time to replay the scenario.

3. Model-Based Testing [2] [3]

The model-based testing approach is not just specific for

web applications only, but it is generally designed to fit all

sorts of software.

Model-based testing is the testing process proceeding from

a model that describes the comportment of the application that

the user wants to test.

This model will be used in order to represent and simulate

the behavior of the system under test (software, web

application…).The model must be abstract to be faithful to the

real system description. The key skill that is really required to

make the model successful and derive from it good test cases

is the design of a good and abstract model that captures only

the essential aspects of the desired application or, in general

terms, the SUT.

Model-based testing is a technique that reduces the amount

of the user interaction by minimizing the manual tasks

afforded by user, and producing tests automatically.

This technique only demand a well done model, that is

indeed, the only part the user have to do; and the rest of

procedure will be done by the tool itself automatically and

basing-on this given model.

Figure 1. Process of Model-based testing approach.

4. Study of Existing Web Testing Tool

As a starting point of our project, a large study has been

done while exploring the web testing tool’s domain.

Many and various tools are provided; for that, users may

wonder what tool to use when testing theirs applications.

According to our research, we have selected a list of 20 web

testing tools. The choice has been based on two major

characteristics: At the first place, selected tools must be

Java-based, afterwards, we have tried to figure out those

between the large scale of Java based tools, what the most

famous and most used are (this analysis has been concluded

from the importance accorded to a given tool in professional

forum discussions, web developers opinions, the total

downloads number of the tool trial…).

Then, when actually trying to judge, in practical terms, the

value of these pre-selected tools, some of them have been

illuminated. Indeed, many problems occur when trying to

evaluate some tools: Some of them display errors even before

any action is performed (like cubic test), other ones seem to be

inefficient or very complicated and incomprehensible for the

regular user (like GUI Dancer and Jubula)…

4.1. Research Methodologies [4] [5]

In order to proceed in analyzing an existing phenomenon, a

research became obligatory to obtain satisfactory results.

Consequently, many methodological ways of research have

appeared to saturate this need.

Indeed, three main research methodologies coexist:

Quantitative, qualitative and mix research.

Every methodology exists to cover a special part of the

sample that the researcher wants to examine.

So, before beginning any research process, the researcher is

demanded to determine first of all its analyzing goals.

According to our case, our goal is to analyze the qualitative

part of existing web testing tools, in order to achieve a quality

product. Underlying this final goal, our research orients

immediately, to the qualitative methodology.

Speaking about this research category, we can mention that

it is characterized by analyzing textual data that can be an

interview, a conversational analysis, a questionnaire…and

then the collection of all provided information to measure the

sample’s quantitative value.

Coming back to our study that consists in examining

existing web testing tools, the questionnaire methodology

seems to be the most suitable solution for this case. A well

done questionnaire, can easily measures the sample

functionalities, and starting from this perspective, we have

prepared an inclusive eight-question-based questionnaire.

These methodological questions are posed in a way to study

the global characteristics of a web testing tool: This study

allows comparing between those tools, detailing their features

and most importantly their limits…

4.1.1. Questionnaire for the Qualitative Research

Methodology [6] [7] [8] [9]

Questions are held in the following part in the format of

eight separated paragraphs

4.1.1.1. Testing Ajax Applications
The first question has as an aim to test if the tool is able or

not to support Ajax functions: It is able or not to record

normally Ajax-based tests? In fact, we have chosen to

accomplish a small simple test, Ajax-based, and repeat this

test with the entire selected tool list.

4.1.1.2. Multisession
Here the question is: Is the tool able to record a same test

from two different web browsers? And does it link between

them in a same action?

This means, if the chosen testing tool is able to record a test

divided in two different web browsers, some actions of the test

are done in a browser; others are done in the other one, to form

a whole one test.

In this level we have chosen to figure out whether a tool is

American Journal of Software Engineering and Applications 2014; 3(5): 63-67 65

able to record a chat action between two users from two

different web browsers, in the same test. Accordingly, this test

can be very useful to test web chatting pages, and it may be a

critical measure to judge the tool.

4.1.1.3. Assertions
In this part we attempt to test if the tool is able or not to

make assertions for HTML elements; we check if a user can be

sure in a specific way that the desired HTML element exists or

not in a specific web page.

Assertions are very important in the testing process. In fact,

for some examples, the use of assertions is critical, like the

case when a login process fails; the application returns a page

indicating that the operation failed. This implies that no error

has been detected. However, this is certainly an error

condition. If the user has included additional pages dependent

on successful login, an error would very probably occur later

in one of these pages.

It is therefore, crucial to use assertions to detect such

situations. Assertions help the tester to identify an error

condition in the early scenario and to avoid analyzing

incomprehensible errors, due to previous failures.

4.1.1.4. Report and Results
In this part, our goal is to explore the tool interface and see

if it is able or not to offer a report or any type of result

indications. Also, this is a very important point, because the

report can ensure users from the test results: it passes or not; if

not, what kind of errors occur, and how to fix them.

An efficient tool must be able to give the maximum details

about a test especially when it fails, to guide users to the right

way in order to get the satisfying results. Therefore, this point

is a critical way to judge the tool efficiency.

4.1.1.5. Multi-Browser Support
The question here is: Is the tool able to works with more

than just one web browser?

A multi-browser tool allows the user to test its web

application in different platforms and that is very useful to

examine how a browser reacts with this application in order to

make it more efficient and convenient for all web browsers.

In some cases a web application can work with a web

browser and fails with another one, so a multi-browser web

testing tool can warn the user to this case, so that he can deal

with this kind of problems.

4.1.1.6. Options of Extracting HTML Elements

The sixth question is: Does the tool provide the user with

any option to pick how it searches and extracts the HTML

elements when playing a test?

Methods of extracting HTML elements are many: by id, by

label, by index…

Every tool has a default method to refer to a recorded

HTML element. Indeed it is the manner how the tool

recognizes a selected element to be able to re-call it again

when playing the test. Some options are non methodological

and fail re-finding the element frequently, so that we can pick

this question as a measurement agent of the tool importance

and efficiency.

4.1.1.7. Error Handling
At this level, our question is how the tool handles with an

error when it happens? Once again tools differ by their

reaction in front of the error occurrence, and that may

represent a factor of distinction between them.

Users may prefer a tool that allows them to choose how to

react when an error occurs, for some purposes related with the

test nature.

Some of them would prefer, for example, to stop the test

execution and try to fix the error; others may want to know

how the application continues in this case, so they pick the

continuation mode when finding an error.

4.1.1.8. Exporting and Importing Options
Right here, we want to see if the web testing tool is able or

not to import and export the test into a specific programming

language.

Exporting projects or tasks are in some cases, very

important, because that allows users to handle with the

exported file: explore it, edit it…without being obliged to

re-open the tool every time.

Besides, it can help them to translate the test into another

programming language that can be very easy to work with for

some users.

4.1.2. Analyzing of the Chosen Web Testing Tools [10]

The questionnaire methodology consists in analyzing some

given samples and making conclusions in order to improve

and develop those samples. We have chosen to illustrate all the

quantitative study done before, in a small table that aims to

allow a direct and easy comparison between deferent tried

tools.

In our project we choose to focus on what we have

considered as the most important and common limits: the

problem of use of the dynamic ID while recording actions and

saving HTML objects during the test, and the un-multisession

issue.

Consequently to these major limits, we can conclude that

the “record and replay” technique is unreliable technique. As a

matter of fact, it is the “record and replay approach” that we

have tried with all previous tools, and we have discovered that

it contains many deficiencies.

5. The Proposed Approach [1]

To avoid all the record and replay approach problems, we

have chosen to create a model-based testing application.

The most important benefit of model-based testing is that

instead of performing many test cases manually the tester can

replace this big effort by just designing a model that describes

the expected behavior of the application that he wants to test.

From the user requests from a given application, the user

has to generate all test cases manually with the traditional

approach, but the model-based testing technique saves the

tester effort by generating all tests cases automatically; only

the model has to be done manually.

66 Dalila Souilem Boumiza et al.: Model-Based Approach to Design web Application Testing Tool

From a given model, the user can select a specific algorithm

that permits the test case generation, so the tester can obtain

different test cases depending on the used algorithm.

Our project relies on this approach because of its diverse

benefits. In fact, model-based testing technique:

• Reduces time costs: Many published studies show that

this technique reduces time while testing. It is a fact that

an abstract model can take time to be well designed but

in case of deriving many test cases of the same

application, the automatic test generation will be faster

and easier than the manual one even when including the

model designing time.

• Helps to detect logical errors: Besides its natural role,

detecting the functionality errors, model-based testing

can help to detect some requirement errors in the

application structure and design, which means that while

designing the model, the tester can detect some errors or

lacks in the application conception and this gives him the

possibility to rectify and develop the application after or

even while testing the model.

• Is easy to be update: One important advantage is that

when the application requirements change, it will be very

difficult to be done once again manually: In case of large

amounts of test cases, it will take time and patience to

repeat all test cases manually, one per one. In case of

model- based testing the user has only to update his

model and re-generate new test cases automatically from

the new updated model.

The main disadvantage of the approach is the time that has

to be spent while modeling an abstract model and also the

necessity of the expertise of some programming language and

modeling skills to achieve a good model

Our application will be in a flash representation a

graphical user interface GUI that is divided into two parts:

� General test scenario creation: Based on, like explained

before, the model-based testing approach to automate

test case generation.

� Specific test scenario creation: That permits the user to

generate a specific test case manually.

So, like that, our project will be like a combination between

the two approach advantages:

� The possibility to automate test generation, especially in

case of large amounts of test cases are needed, to profit

from the model-based testing technique and the test

automation. This technique will be faster and easier in

our project by simplifying the model designing

compared to the existing one. This plus will make

models easier to be modeled by the user and will reduce

the amount of errors in the test. The simplification of

the existing model format will be explained later on the

conception part to explain the conception of the new

model standard and then in the realization chapter to

demonstrate how we have realized the designed model.

� The possibility to pick the manually recording test in

case of a specific test case, because if the tester wants to

test just one specific case, the automatic mode will

generate many test cases, and that will demand a long

time to find the suitable and desired case if it exists. So,

in this case, a manual test will be a faster, easier and

more practical solution.
The case of a specific scenario creation will be also

model-based, despite that we will not use the model to

generate test cases automatically, but it will be used to build a

step by step test case, in terms of the user choice.

Figure 2. The architecture of the GUI.

Figure 3. General architecture of application.

For web testing applications, models will be like a

behavior’s description of a given website. For that, the model

can be considered as a group of states that represent all

possible status of the application. Moving from a state to

another is in fact a result of a specific action that leads the

application from a status to another one.

So like that, a model can be regarded as a combination of

states and actions that are related in a logical and sequential

way to form a state chart diagram.

For more understanding the following figure can translate

the internal components interaction in the application, relating

the testing process to its logical explanation.

American Journal of Software Engineering and Applications 2014; 3(5): 63-67 67

6. The Conception of the GUI [11]

6.1. Global Structure of the Application

The following figure recapitulates the application’s

behavior. Red boxes are the actions that have to be done by the

user, and the green ones are those afforded by the application.

All user actions are afforded by simple mouse interactions

with the tool. The only important action that the user has to do

is the model designing.

After selecting the model describing the SUT behavior, the

user can follow the previous steps indicated in the figure: First

of all, the user has to select a testing mode through the first

window of the application. Second, the GUI will

automatically extract all the constitutions (states, actions and

assertions) of the given model using the java reflection. If the

selected mode is automatic, test cases generation will be done

automatically after picking a specific generation algorithm (an

algorithm is a specific manner that the application can follow

to produce automatic testes). If the user choice is the manual

mode, the tool will display all the possible actions in the

model, and then the user can select a specific one between

them.

Figure 4. Structure of the GUI.

From this chosen action the tool will display the state that

the action has led to. From the new state, the tool will display

all the possible actions in this particular state so that the tester

can pick another action leading to a new state and so one in

order to form the desired test case (traveling in a state chart

diagram). After creating automatic or manual test cases, the

user can modify, save, execute or delete any test he wants.

7. Conclusion

In this paper we have tried to demonstrate the need of a new

approach for testing web applications.

Previously while speaking about the adopted solution

according to traditional testing ways, we have mentioned that

we have improved existing models format, for the automatic

testing mode. The old model has to handle with all the

existing actions in the SUT independently, which means that

the model designer has to produce all the possible actions and

relate them to form a state chart diagram. This process can be

very long and fatiguing when designing web application

models, because they are complicated and rich. So, we have

merged some related actions into one action. For example, to

perform a login process to a specific website, the user has to

accomplish three successive actions: entering the user pseudo

name or email, then the password and finally clicking the

submit button. By merging those three actions in a unique

action, we can save the designer effort and time.

References

[1] D. Souilem Boumiza and A. Ben Azzouz and F. Ben Brahim
2012 “Design and development of a user interface to customize
web testing scenarios” International Conference on Education
& E-Learning Innovations ICEELI' 2012 , July 1-3
Sousse,Tunisia

[2] C. Eaton and A. M. Memon: "An Empirical Approach to
Testing Web Applications Across Diverse Client Platform
Configurations" by. International Journal on Web Engineering
and Technology (IJWET), Special Issue on Empirical Studies
in Web Engineering, vol. 3, no. 3, 2007, pp. 227–253,
Inderscience Publishers.

[3] T.Banner, H.Eicher, A.Rennoch. “Model-based testing in
practice”. 2nd workshop on model-based testing. In practice
MOTIP 2009.

[4] Sampath, R. Bryce, Gokulanand Viswanath, Vani Kandimalla,
A. Gunes Koru: “Prioritizing User-Session-Based Test Cases
for Web Applications Testing”. Proceedings of the
International Conference on Software Testing, Verification, and
Validation (ICST), Lillehammer, Norway, April 2008.

[5] Research methodologies: concluded from
http://www.enge.vt.edu”, on april 2012.

[6] Testing anywhere: concluded from http://www .
softwaretesting.net/ otherproducts/ testinganywhere .html ,
2012.

[7] Win Task: concluded from http://www .csscody.com/ resources
/ web -testing- tool -list , 20013.

[8] Bad Boy: concluded from “http:/www.badbody.com.au/” 2012.

[9] Sahi: “http:/www.sahi.co.in/w/” 2012

[10] Fabasoft app.test : concludes from “htt://en.wikipedia.org/
wiki/fabasoft_app.test” , April 2012.

[11] Unified Modeling Language: Extract from
“http://en.wikipedia.org/wiki/ Unified_Modeling_Language” ,
May 2012.

[12] Softwareengineering: http://en.wikipedia.org/wiki/Software
_engineering, on April 2012

[13] J. Ernits, R. Roo, J. Jacky, M. Veanes
«http://research.microsoft.com/pubs/101196/extended_version
.pdf » On August 9, 2012

[14] B. Hayduk, « http://searchsoftwarequality.techtarget.com
/tip/Model-based-testing-for-Java-and-Web-based-GUI-applic
ations » On August 9, 2012

