

American Journal of Software Engineering and Applications
2014; 3(3): 21-28

Published online July 10, 2014 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20140303.11

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Software reuse facilitated by the underlying requirement
specification document: A knowledge-based approach

Oladejo F. Bolanle
1, 2, *

, Ayetuoma O. Isaac
1, 2

1Department of Computer Science, University of Ibadan, Ibadan, Nigeria
2University of Ibadan, UI, Ibadan, Nigeria

Email address:
fb.oladejo@ui.edu.ng (O. F. Bolanle), ayetuomaisaac@yahoo.com (A. O. Isaac)

To cite this article:
Oladejo F. Bolanle, Ayetuoma O. Isaac. Software Reuse Facilitated by the Underlying Requirement Specification Document: A

Knowledge-Based Approach. American Journal of Software Engineering and Applications. Vol. 3, No. 3, 2014, pp. 21-28.

doi: 10.11648/j.ajsea.20140303.11

Abstract: Reinventing the wheel may not be appropriate in all instances of software development, and so, rather than do

this, reuse of software artifacts should be embraced. Reuse offers certain benefits which include reduction in the overall

development costs, increased reliability, standards compliance, accelerated development and reduced process risk.

However, reusable software artifacts may not be considered useful if they cannot be accessed and understood. In this work,

a knowledge based system was designed to capture requirements specification documents as abstract artifacts to be reused.

Both explicit and tacit knowledge identification and acquisition- an important step in knowledge base development, was

carried out through extraction from customer requirement documents, interviews with domain experts and personal

observations. Protege4.1 was used as a tool for developing the Ontology. Web Ontology Language (OWL) was the search

mechanism used to search the classified ontology to deduce reusable requirement components based on the underlying

production rules for querying and retrieval of artifacts. Knowledge was formalized and result testing was carried out using

software requirement specification documents from different domains. Result shows that only requirements with similar

object properties called system purpose could really reuse such artifacts. The possibility of accessing more reusable

artifacts lies in the update of the repository with more requirement specification documents. Scopes and purposes of

previously developed software that would suit a proposed system in the same (or similar) domain would be found and

consequently support the reuse of any of the end-products of such previously developed software.

Keywords: Knowledge Based System, Ontology, Reuse, Software, SRSR-Software Requirement Specification Reuse

1. Introduction

The design process in most engineering disciplines is

based on reuse of existing systems or components.

Mechanical or electrical engineers do not normally specify

a design where every component has to be manufactured

specially. They base their design on components that have

been tried and tested in other systems. These are not just

small components such as flanges and valves but include

major subsystems such as engines, condensers or turbines.

Software reuse “refers to the use of previously developed

software resources in new applications by various users

such as programmers and systems analysts” [1].

Considering the high cost and much stress involved in

producing quality software one would expect that reuse

should be a welcome idea to all stakeholders involved in

the process, but research has shown the contrary; reuse has

not been broadly applied across all spectrum of the industry.

Reuse-based software engineering is a comparable

software engineering strategy where the development

process is geared to reusing existing software. The paradigm

shift to reuse-based approach in software development is as a

result of the demands for reduction in the development and

maintenance costs of software, faster delivery and

improvement of the quality of software. More and more

companies see their software as a valuable asset and are

promoting reuse to increase their return on software

investments. The tasks of maintaining the large collection of

components and allowing the users to easily find out the

components they need are critical to reducing the cost of

22 Oladejo F. Bolanle and Ayetuoma O. Isaac: Software Reuse Facilitated by the Underlying Requirement Specification Document:

A Knowledge-Based Approach

reuse. There is need for effective tools to support cataloguing

the components and searching them. To achieve this, we

might have to borrow the ideas and techniques from the field

of Artificial intelligence (knowledge representation

techniques), database management system field, and system

science (techniques of building systems with components)

[2].

2. Theoretical Background

2.1. Software Development Process and its Phases

Indeed, building computer software is an iterative

learning process, and the outcome, something that Baetjer

would call “software capital,” is an embodiment of

knowledge collected, distilled, and organized as the process

is conducted [3]. Software development process is a

roadmap that provides the framework from which a

comprehensive plan for software development can be

established. The generic activities carried out in software

development process include Software specification- this is

where customers and engineers define the software to be

produced and the constraints on its operations, software

development- software is designed and programmed,

software validation- software is checked to ensure it is what

the customer actually asked for, software evolution-

software is modified to suit changing customer’s needs and

market requirement. A process model for software

engineering- software engineering paradigm is chosen

based on the nature of the project and application, the

methods and tools to be used, and the controls and

deliverables that are required. A number of different

process models for software engineering such as waterfall

approach, component-based development, concurrent

development model, the RAD model, the Prototyping

model, Evolutionary software development process

models-incremental model and spiral model, have been

proposed, each exhibiting strengths and weaknesses[4], but

all having a series of generic phases in common, prominent

among these phases is a communication link between

developers and customers for the purpose of requirement

engineering covering feasibility study, requirement

elicitation and analysis, requirement specification,

validation and management, which goes to show that for a

failure-free software product to be produced, a keen

attention must be paid to this phase. Understanding what to

build is one of the most tedious aspects of software

development because sometimes customers do not really

know what they want, so capitalizing on previously used

abstract artifacts like requirement specification document

may open the mind of software customers to more

functionalities that could have been overlooked.

In a survey carried out by Standish group in 1994[5], [6]

with over 350 companies, asking about the state of their

over 8000 software projects, respondents were asked to

explain the causes of failed software project. The top

factors were reported as: Incomplete requirements-13.1%,

Lack of user involvement-12.4%, Lack of resources-10.6%,

Unrealistic expectations-9.9%, Lack of executive support-

9.3%, Changing requirements and specifications-8.7%,

Lack of planning-8.1%, System no longer needed-7.5%.

Notice that some part of the requirements elicitation,

definition, and management process is involved in almost

all of these causes. Lack of care in understanding,

documenting, and managing requirements can lead to

myriad of problems: building a system that solves the

wrong problem, that does not function as expected, or that

is difficult for the users to understand and use [7]. This

work focused on the reuse of requirement specification

documents that have been used to implement successfully

developed and operational software, enabling a developer

to choose requirement specification that meet user needs,

display well outlined components of requirement

specification for ease of understanding and access in order

to facilitate timely software development.

2.2. Software Reuse in Software Development Projects

Reuse is the default problem-solving strategy in most

human activities, and software development is no exception.

Software reuse means reusing the inputs, the processes, and

the outputs of previous software development efforts; it is a

means toward an end: improving software development

productivity and software product quality. Reuse is based

on the premise that deducing a solution from the statement

of a problem involves more effort (labour, computation etc.)

than inducing a solution from that to a similar problem, one

for which such efforts have already been expended. While

the inherent complexities in software development make it

a good candidate for explorations in reuse, it is far from

obvious that actual gains will occur. The challenges are

structural, organizational, managerial, and technical [8].

With the increasing complexity in software systems,

stakeholders in the business of software development need

to get acquainted with vast amount of information and

knowledge in various areas, likewise the need to store this

knowledge for easy access for reuse. The knowledge

gathered during the development stage can be a valuable

asset for a developer as well as the software company.

During the software development process, the management

and maintenance of knowledge creation is a necessary thing.

Then only that knowledge is integrated to develop the

innovative concept from the older one. So the company

must store and manage it for reuse [9].

Reusable artifacts can be software components, software

requirement analysis manuals, and design models, database

schema, objects, code documentation, domain architecture,

test scenarios, and plans. The existing software can be from

within a software system or other similar software systems

or widely in different systems. For example, MS Office

2003 a tool to create and to edit different types of

documents, worksheets, presentation slides and databases.

They came up with the MS Office 2007 which is the latest

version of it (as at 2007). Just like this there are so many

examples we can consider as a Software Reuse [10].

 American Journal of Software Engineering and Applications 2014; 3(3): 21-28 23

Reuse-based software engineering is an approach to

development that tries to maximize the reuse of existing

software. The software units that are reused may be of

radically different sizes. For instance, Application system

reuse- the whole of an application system may be reused by

incorporating it without change into other systems,

Component reuse- components of an application may be

reused, Object and function reuse- components that

implement a single function may be reused. A

complementary form of reuse is concept reuse where,

rather than reuse a component, the reused entity is more

abstract and is designed to be configured and adapted for a

range of situations. Concept reuse can be embodied in

approaches such as design patterns, configurable system

products and program generators. The reuse process, when

concepts are reused, includes an instantiation activity where

the abstract concepts are configured for a specific situation.

Many techniques have been developed to support software

reuse and these techniques exploit the facts that systems in

similar application domain are identical and therefore have

potential for reuse which is possible at different levels-

from simple functions to complete applications [11].

According to Sommerville, (Sommerville, 2008), the

followings are the number of ways to support software

reuse (i.e. techniques for reuse):

i. Application product lines

ii. Aspect-oriented software development

iii. Configurable vertical applications

iv. Component-based development

v. Component frameworks

vi. COTS integration

vii. Design patterns

viii. Legacy system wrapping

ix. Program generators

x. Program libraries

xi. Service-oriented systems

Seeing that a huge number of techniques for reuse exist,

it is therefore pertinent to figure out which is the most

appropriate to use for a particular instance of reuse. When

planning reuse, key factors one should consider are:

i. The development schedule for the software

ii. The expected software lifetime

iii. The criticality of the software and its non-functional

requirements

iv. The background, skills and experience of the

development team

v. The application domain and

vi. The platform on which the system will run.

Proponents claim that objects and software components

offer a more advanced form of reusability, although it has

been tough to objectively measure and define levels of

reusability. Reusability implies some explicit management

of build, packaging, distribution, installation, configuration,

deployment, maintenance, and upgrade issues. If these

issues are not considered, software may appear to be

reusable from design point of view, but will not be reused

in practice.

2.3. Knowledge Engineering Techniques

Knowledge refers to the perception an individual has

about a fact or event in certain context [12]. For instance, a

medical Doctor practices with the skill he possesses to treat

and administer drugs to patients. Such knowledge is known

as ‘know-how’. Also a procedure manual or recipe for a

meal is another instance of knowledge which is regarded

as ’know’. There are two main types of knowledge, explicit

(objective) and tacit (subjective) knowledge. The various

kinds of knowledge are illustrated in figure 1 [13]. Tacit

knowledge refers to ‘know-how’ of an individual while

explicit knowledge is the articulated knowledge in form of

documents, operation manual, video, etc. Explicit

knowledge could be readily transmitted across individuals

formally and systematically.

Figure 1. Classification of knowledge [13].

Knowledge Engineering is a branch of AI which

analyzes the knowledge of a given domain and transforms

it to a computable form for specific purpose. It entails

knowledge representation which involves the translation of

an informal specification to a formal (computable) one by a

knowledge engineer who uses his wealth of background

knowledge from reference sources or a domain expert [14].

There are certain guidelines for adequate knowledge

representation.

2.3.1. Principles of Knowledge Representation

Certain factors that contribute to adequate representation

of knowledge according to Randall in [14], are as follows.

Knowledge representation should serve as a surrogate

(substitute/stand-in) for physical objects or events and the

relationships amongst them with the aid of symbols and its

links to model an external system.

It is a set of ontological commitments that determine

various categories of objects of a domain.

It should describe the behavior and interaction amongst

domain objects in order to reason about them.

Next is the fact that knowledge representation should be

a medium for efficient computation which enables the

encoding of represented knowledge in order to facilitate

efficient processing with the aid of appropriate computing

equipment.

Finally, it should be a medium of human expression in

such a way to facilitate the understanding and

24 Oladejo F. Bolanle and Ayetuoma O. Isaac: Software Reuse Facilitated by the Underlying Requirement Specification Document:

A Knowledge-Based Approach

communication of both knowledge engineer and domain

experts.

Knowledge representation is often augmented with

reasoning (the process of applying knowledge to arrive at

the conclusion) techniques: that is, provision of methods to

handle the tracking of transition among system’s properties

or knowledge and underlying reasons for such transitions.

There are two approaches to reasoning techniques, namely,

declarative and procedural. The latter is similar to step-wise

programming or algorithmic approach while the former

requires the use of axioms or logical statements to describe

specifications and theorem-proving technique to reason

about knowledge [14]. The choice of appropriate

techniques for representing and reasoning about domain

knowledge actually depends on the nature of requirements

for a knowledge-based system.

2.3.2. Development of Knowledge Based Systems

A Knowledge Based System (KBS) is a software

application with an explicit, declarative description of

knowledge for a certain application [15] (Speel et al, 2001)

in Avram. There is no clear separation criterion between a

KBS and an information/software system as almost all

contain nowadays knowledge elements in them [20]

(Schreiber et al, 1999) in [21] Avram. Conventional

software applications perform tasks using conventional

decision-making logic -- containing little knowledge other

than the basic algorithm for solving that specific problem

and the necessary boundary conditions. This program

knowledge is often embedded as part of the programming

code, so that as the knowledge changes, the program has to

be changed and then rebuilt. Knowledge-based systems

collect the small fragments of human know-how into a

knowledge-base which is used to reason through a problem,

using the knowledge that is appropriate.

The development process of a KBS is similar to the

development of any other software system; phases such as

requirements elicitation, system analysis, system design,

system development and implementation are common

activities. The stages in KBS development are: business

modelling, conceptual modelling, knowledge acquisition,

knowledge system design and KBS implementation [15]

(Speel et al, 2001) in Avram.

A KBS is nowadays developed using knowledge

engineering techniques (Studer et al 1998). These are

similar to software engineering techniques, but the

emphasis is on knowledge rather than on data or

information processing. The central theme in knowledge

engineering techniques is the conceptual modelling of the

system in the analysis and design stages of the development

process. Many of the knowledge engineering

methodologies developed emphasizes the use of models

(Common KADS, MIKE, and Protégé).

In the early stages, knowledge-based systems were built

using the knowledge of one or more experts – essentially, a

process of knowledge transfer (Studer et al, 1998).

Nowadays, a KBS involves “methods and techniques for

knowledge acquisition, modelling, representation and use

of knowledge” (Schreiber et al, 1999) in Avram

In current practice the transfer of expertise from a

domain specialist to a knowledge-based system involves a

computer scientist intermediary–or knowledge engineer.

The specialist and the engineer discuss the domain in a

series of interactions. During each interaction, the engineer

gathers some understanding of a portion of the specialist's

knowledge, encodes it in the evolving system, discusses the

encoding and the results of its application with the

specialist, and refines the encoded knowledge. The process

is a painstaking one–expensive and tedious. As a result, one

of the foremost problems that have been identified for

KBSs is the knowledge acquisition bottleneck (Reid, 1985).

The shift towards the modelling approach has also enabled

knowledge to be re-used in different areas of one domain

(Studer et al, 1998). Ontologies and Problem-Solving

Methods enable the construction of KBSs from components

reusable across domains and tasks.

2.4. Review of Related Works

According to [16] in a paper titled A Pragmatic

Approach to Software Reuse, published in a Journal of

Theoretical and Applied Information Technology, the

reliability level of every reusable software artifact

(requirement specification document, in this instance), is

enhanced by a successful reuse and this success in turn

increases the usefulness of such artifact in the reuse

repository (such as a knowledge based system), and

ultimately, the risk of failure of the resulting software

product developed from such artifact is reduced. With the

availability of a knowledge based system that serves as a

repository for software requirement specification

documents, which is a basis for building software

adequately reflects the user’s need and developer’s

technical know-how, timeliness in development and cost

reduction would be facilitated while validation and

verification of software will be enhanced likewise. Higher

scheduling accuracy of the various tasks in the software

development process is possible due to the reuse of process

materials along with a better understanding of the product

domain; therefore categorizing requirement specification

document in the knowledge base along domain line is

worthwhile.

Since the process has been completed before, project

managers, having access to previous projects’ scheduled

and actual hours for production can adjust their current

schedule based on previous performance and the amount of

reusable artifact in the repository they intend to use.

According to Jalender et al., the most substantial but not

immediate benefits of reuse is derived from product line

approach where a common set of reusable software assets

act as a base for subsequent similar software product in a

given functional domain. It was posited that the upfront

investments required for software reuse are considerable

and need to be duly considered prior to attempting a

software reuse initiative, repositories of software assets

 American Journal of Software Engineering and Applications 2014; 3(3): 21-28 25

must be created and maintained.

Lethal and Carl (1997) wrote on Automatically

Identifying Reusable OO Legacy Code where they are of

the view that much object-oriented code has been written

without reuse in mind, making identification of useful

components difficult. The Patricia system (a tool for object

oriented program understanding) automatically identifies

these components through understanding comments and

identifiers. According to [17], aspects of Object oriented

code such as classes, inheritance, and parametric

polymorphism underline the need for good, semantically

based tools to aid in the understanding, and thus the reuse,

of Object oriented code. The paper stated that to determine

whether a code component can be reused in a particular

domain, or area of application, these semantically based

tools must answer two questions: Are the purpose and

capabilities of the code component useful in the current

domain? Is the quality of the code component sufficient for

the needs of the current domain?

Completely understanding what capabilities a class

provides involves gathering information from a variety of

sources, including the source code, user documentation

(such as manuals), and documentation for requirements and

design specifications.

In a research work “Towards Principles for the Design of

Ontologies Used for Knowledge Sharing”, [18] analyzed

design requirements for shared ontologies and a proposal

for design criteria to guide the development of ontologies

for knowledge-sharing purposes. A usage model for

ontologies in knowledge sharing was described and some

design criteria based on the requirements of this usage

model were proposed.

In a paper “Using Ontologies for Knowledge

Management: An Information Systems Perspective”, [19]

surveyed some of the basic concepts that have been used in

computer science for the representation of knowledge and

summarized some of their advantages and drawbacks. The

survey classifies the concepts used for knowledge

representation into four broad ontological categories viz:

Static ontology which describes static aspects of the world,

i.e., what things exist, their attributes and relationships, A

Dynamic ontology, which describes the changing aspects of

the world in terms of states, state transitions and processes,

Intentional ontology, which encompasses the world of

things agents believe in, want, prove or disprove, and argue

about, and Social ontology which covers social settings,

agents, positions, roles, authority, permanent organizational

structures or shifting networks of alliances and

interdependencies. They advocated a complementary use of

concepts and techniques from information science and

information systems in knowledge management as a result

of the vast, complex and dynamic information

environments. The ontology approach from information

modeling described in this paper derives its strength from

the formalization of some domain of knowledge; however,

many domains resist precise formalization. In each domain,

there are points at which formalization becomes more of a

straightjacket than a liberating force. The challenge

therefore is not so much to decide which approach is better,

but to develop techniques for the various approaches to

work closely together in a seamless way. It was posited that

the key to providing useful support for knowledge

management lies in how meaning is embedded in

information models as defined in ontologies.

3. Research Methodology

3.1. Conceptual Framework for Knowledge Engineering

for Reuse

In an attempt to model the knowledge base for the reuse

of software requirement specification, the conceptual

framework for knowledge Engineering for reuse is first

established. This is represented in figure 2, describing how

knowledge is represented and computed to produce output

for utilization as a solution to an existing problem.

How do we represent what we know? Knowledge is a

general term. An answer to the question, “how to represent

knowledge”, requires an analysis to distinguish between

knowledge “how” and knowledge “that”. Knowing how to

do something, for example, “how to operate a machine” is a

Procedural knowledge. Knowing that something is true or

false, for instance, “the temperature limit for a machine in

operation” is a Declarative Knowledge.

Knowledge and Representation are two distinct entities.

They play a central but distinguishable role in intelligent

systems. Knowledge is a description of the world. It

determines a system’s competence by what it knows.

Representation is the way knowledge is encoded. It

defines a system’s performance in doing something. A good

representation enables fast and accurate access to

knowledge and understanding of the content. Knowledge

representation can be considered at two levels:

a. Knowledge level at which facts are described, and

b. Symbol level at which the representations of the

objects, defined in terms of symbols, can be manipulated in

the programs.

Figure 2. Knowledge Representation Framework [22] Extended for Reuse

Different types of knowledge require different kinds of

representation and reasoning. The knowledge

representation models/mechanisms are often based on: (i)

Logic, (ii) Rules, (iii) Frames and (iv) Semantic Network.

26 Oladejo F. Bolanle and Ayetuoma O. Isaac: Software Reuse Facilitated by the Underlying Requirement Specification Document:

A Knowledge-Based Approach

Fig. 2 shows a description of framework adapted from

[22] for knowledge representation and reuse of such

knowledge.

The computer requires a well-defined problem

description to process and provide well-defined acceptable

solution from a reused component. To collect fragments of

knowledge we need first to formulate a description in our

spoken language and then represent it in formal language

so that computer can understand. This is where ontology

comes in into modelling the contents of the knowledge base.

The computer can then use an algorithm to compute an

answer as illustrated in fig. 2. The steps are:

The informal formalism of the problem takes place first.

It is then represented formally in ontology and the

knowledge base produces an output upon query. This

output can then be represented in an informally described

solution that user (software engineers) understands or

checks for consistency in line with initial customer’s

requirements.

It is noteworthy however to state that problem solving

requires formal knowledge representation, and conversion

of informal knowledge to formal knowledge, as well as

conversion of implicit knowledge to explicit knowledge.

3.2. Formalization of Knowledge Engineering

Framework for Software Reuse

The Finite Automaton (FA) in fig. 3 is a five tuple (Q, ∑,

ᵟ, So, F) describing the process of transmission of software

requirement data from one state to another, undergoing

refinement and necessary adjustment as required where,

Q is the set of all states in the automaton represented by

circles in fig. 3, thus:

Q = {S0, S1, S2, S3, S4} where:

S0= Initial customer specification information

S1= Designer’s specification

S2= Agreed specification (Software Requirement

Specification)

S3 = Formalized knowledge in the knowledge based

system

S4 = Reusable knowledge (for future specifications)

∑ is the string of valid characters that can occur in the

input stream. Typically, ∑ is the union of the edge labels in

fig. 3.

ᵟ: Q x ∑ → Q is the transition function for the automaton.

It depicts the state changes induced by an input character

string for each state; ᵟ is represented by the labeled edges

that connect states in fig. 3.

Figure 3. The Finite Automata showing framework for Reuse of Software

artifact (requirement engineering

3.3. Knowledge Base Development for Software

Requirement Specification for Reuse (SRSR)

The approach to reuse adopted is knowledge-based; a

software system with an explicit, declarative description of

knowledge for diverse domains. We would expect to find

artifacts from which self-contained applications can be

constructed based on certain characteristics and the goal

(purpose for utilization, driven by requirement

specification). The knowledge based system was

implemented using protégé 4.1.

Figure 4. An Existing Health Records System SRS showing its

‘PURPOSE’

 American Journal of Software Engineering and Applications 2014; 3(3): 21-28 27

4. Research Findings and Result

The ontological tool used for the ontological architecture

of the knowledge based system is Protégé 4.1. This

produces a generalized class of ontology that describes

various requirement specification documents for different

domains of software. The object properties of the various

classes are inherited from the super class called Software

Requirement Specification and these properties reflect the

content specified by IEEE standard 1233[23]. Fig. 4 shows

the screen shot of a requirement specification document

retrieved to view its purpose, which reflects the functional

and non-functional requirements of the software being

developed.

Artifacts stored in this repository possess the attributes

shown in table 1, and these make them suitable for reuse.

Table 1. Features of suitability of the artifacts for reuse

Attributes Comments

Simplicity
Minimum and explicit artifact interfaces which encourage developers to use artifacts, simple and easy to understand artifacts can

also be easily modified by developers to suit new applications.

Expressiveness
They are of general utility and of adequate level of abstraction, so they could be used in many different contexts within their

domains.

Definite

They are constructed and documented with clarity of purpose, their capabilities and limitations are easily identifiable, interfaces,

required resources, external dependencies and operational environments are specified, and all other requirements are explicit and

well defined.

Additive
It is possible to seamlessly compose these existing artifacts into new products or other reusable components, without the need for

massive software modifications or causing adverse side effects

Easily
Changeable

Certain type of problems will require artifacts to be adapted to the new specifications, such changes should be localized to the
artifact and require minimum of side effects

Unambiguous Each requirement is stated in such a way so that it can be interpreted in only one way without ambiguities.

Organized The requirements and sub-components are well structured in the ontology

5. Conclusion

Software reuse, as appealing as it appears, if it is not

carefully implemented, the cost involved in software

development using reuse may be much more than that

incurred when software is developed from scratch.

Therefore, reuse that is facilitated by the knowledge based

repository of the underlying the requirement specification

documents of previously developed software product is like

building a strong foundation for a complex structure, and

this gives reliability and assurance of quality. The

knowledge based system uses semantic approach to search

for reusable requirement components whose product can be

partly or entirely utilized for developing a proposed system.

With software domain specific repository available, based

on the reference architecture and on the requirements we

would be able to locate and reuse some domain specific

reusable components. This work can be extended to see

how the reuse of requirement specification documents

alters the conventional software development life cycle.

References

[1] Y. Kim and E.A. Stohr, “Software Reuse: Survey and
Research Directions,” Journal of Management Information
Systems, 1997.

[2] R. B. Victor, B. John, G. J. Bok, and H.R. Dieter, “Software
Reuse: A framework for Research,” Department of
Computer Science, University of Maryland, 2002.

[3] H. Baetjer, Jr., “Software as Capital,” IEEE Computer
Society Press, 1998, p. 85.

[4] R. S. Pressman, “Software Engineering. A Practitioner’s
Approach,” 5th ed., McGraw-Hill series in Computer
science, 2001.

[5] Standish Group. The CHAOS Report. Dennis, M.A: The
Standish Group, 1994.

[6] Standish Group. “The Scope of Software Development
Project Failures,” Dennis, MA: The Standish Group, 1995.

[7] S.L. Pfleeger and M.A. Joanne, “Software Engineering:
Theory and Practice.” 4th ed., Pearson Higher Education, 2010.

[8] M. Hafedh, M. Fatma, and M. Ali, “Reusing Software:
Issues and Research Directions,” IEEE Transactions on
Software Engineering, Vol. 21, No. 6, June 1995.

[9] G.N.K. Suresh, and S.K. Srivatsa, “Analysis and Measures
of Software Reusability.” International Journal of Reviews
in Computing, 2009.

[10] P. Nandish, “Software Reuse and/or Software Complexity
Management.” Networks on Chips, 2008.

[11] I. Sommerville, “Software Engineering,” 8th Edition,
(Addison-Wesley Publishers Ltd.,), 2008, pp. 415 - 438.

[12] B.F Oladejo & A.O. Osofisan, “A Conceptual Framework
for Knowledge Integration in the Context of Decision
Making Progress,” African Journal of Computer & ICT, vol.
4, No. 2. Issue2. Pp.25-32, 2011.

[13] B. F. Oladejo, V. T. Odumuyiwa, and A. A. David,
“Dynamic Capitalization and Visualization Strategy in
Collaborative Knowledge Management system for EI
process,” World Academy of Science, Engineering and
Technology pp66, 2010.

[14] J. F. Sowa, “Knowledge Representation: logical,
philosophical, and computational foundations,” Brooks Cole
Publishing Co., Pacific Grove, CA. 2000.

28 Oladejo F. Bolanle and Ayetuoma O. Isaac: Software Reuse Facilitated by the Underlying Requirement Specification Document:

A Knowledge-Based Approach

[15] P. Speel, A. Th. Schreiber, W.V. Joolingen, and G. Beijer,
“Conceptual Models for Knowledge-Based Systems.”
Encyclopedia of Computer Science and Technology, Marcel
Dekker Inc., New York, 2001

[16] B. Jalender, A. Govardhan, and P. Premchand, “A Pragmatic
Approach to Software Reuse.” A Journal of Theoretical and
Applied Information Technology, 2010.

[17] H.E. Lethal, and G. D. Carl, “Automatically Identifying
Reusable OO Legacy Code.” University of Alabama,
Huntsville, 1997.

[18] T.R. Gruber, “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing.” 1993.

[19] J. Igor, M. John, and Y. Eric, “Using Ontologies for
Knowledge Management: An Information Systems

Perspective. University of Toronto, Toronto, Ontario,
Canada. 1999.

[20] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog,
N. Shadbolt, W.V. de Velde, and B. Wielinga, “Knowledge
Engineering and Management: The Common KADS
Methodology,” Massachusetts: MIT Press, 1999.

[21] G. Avram. Empirical Study on Knowledge Based Systems.
The Electronic Journal of Information Systems Evaluation,
Vol. 8, Iss.1, pp 11-20, available online at www.ejise.com,
2005

[22] D. Poole, “Knowledge Representation Framework,” 1998.

[23] IEEE-Std 1233, IEEE Guide for Developing System
Requirements Specifications, 1998.

