

American Journal of Software Engineering and Applications
2014; 3(1): 1-11
Published online April 20, 2014 (http://www.sciencepublishinggroup.com/j/ajsea)
doi: 10.11648/j.ajsea.20140301.11

Do agile methods increase productivity and quality?
Gabriela Robiolo, Daniel Grane

Informatica, Universidad Austral, Buenos Aires, Argentina

Email address:
grobiolo@austral.edu.ar (G. Robiolo), daniel.grane@gmail.com (D. Grane)

To cite this article:
Gabriela Robiolo, Daniel Grane. Do Agile Methods Increase Productivity and Quality? American Journal of Software Engineering and
Applications. Vol. 3, No. 1, 2014, pp. 1-11. doi: 10.11648/j.ajsea.20140301.11

Abstract: The Agile methods popped up in the history of software development methods as a solution to several frequent
problems, but what is still not clear is whether they produce a significant improvement in productivity and quality or not, if
they are compared to the traditional software development methods. In order to clarify this issue and contribute to a better
understanding of these methods, we designed an empirical study in which Agile and traditional methods were compared in
an academic context. By applying a traditional method to the development of software products, we managed to obtain a
more reproducible result, though we could not obtain evidence of an improvement in quality. On the contrary, by applying
an Agile method, we obtained evidence of higher productivity, but with a significant dispersion, an aspect that would be
interesting to analyze in future studies.

Keywords: Agile, Rup, Scrum, Productivity, Quality, Extreme Programming

1. Introduction
In the 1990s, new processes and methodologies that deal

with software development projects appeared. As they
evolved, and because of their particular characteristics, these
development methodologies fell into two broad categories:
traditional and Agile. On the one hand, traditional methods
involve those in which the systems are fully specified, they
are predictable and they are built according to meticulous
and extensive planning. Besides, these projects are run by a
clearly defined head that controls the activities, based on
explicit knowledge. The organization where this happens is
usually large, bureaucratic, with a high degree of
formalization, which makes communication formal too. In
addition, the software life cycle of their products may be
described as waterfall or spiral, and the testing is most surely
performed at the end of the cycle [1].

On the contrary, Agile methods are based on the premise
that high quality software -adaptable to different conditions-
is developed by small groups, using a design which gets
continuous improvement. Besides, constant testing provides
a rapid feedback, thus making the early introduction of
improvements possible. The management structure of the
organization in which Agile methods are used tends to be
informally defined; it is based on natural leadership and
collaboration. Regardless of the size of the organization,
work is divided into small groups, where communication
within the teams is informal, the internal organization is

flexible and their members are participatory. The life cycle
of their products is often evolutionary, which includes
requirements management and continuous testing [2].

In fact, the Agile methods popped up in the history of
software development methods as a solution to several
frequent problems. The principal ideas of this solution are
summarized in the Agile manifesto1, which states: “We are
uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to
value: individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation and
responding to change over following a plan”. Their creators
consider that the items in bold letter have more value than
the others.

The Agile methods [3] have greatly impacted on the
manner in which software is developed worldwide, so it is
convenient to learn if the Agile methods have actually
improved the software development life cycle, principally in
aspects such as productivity and quality. Consequently, we
would like to answer the following research question: do the
use of Agile methods necessarily lead to improved
productivity and quality, if compared to those obtained by
traditional methods, or is it that the new methods are just an

1 http://agilemanifesto.org/

2 Gabriela Robiolo and Daniel Grane: Do Agile Methods Increase Productivity and Quality

evolution of the traditional ones, without a significant impact
on productivity and quality, as observed by Hirsch [4]?

In order to clarify this issue and contribute to a better
understanding of these methods by providing more
empirical evidence, we designed an empirical experience.
This empirical study compared similar applications which
were developed by applying either the Rational Unified
Process (RUP) , SCRUM or Extreme Programming (XP) in
an academic environment. RUP was selected because it is a
framework that merges different development
methodologies and because due to its characteristics it may
be considered a traditional method. SCRUM was chosen
because it is popular in the industry [3] and XP because it is
the Agile method for which more empirical results have
been reported [3].

In the coming sections of this paper a collection of related
articles will be commented; the planning, the execution and
the results of our empirical experience will be described;
such results will be discussed and finally, conclusions will
be drawn.

2. Related Work
There has been increasing interest in empirical studies

concerning Agile methods for some years [5]. In fact,
several empirical studies were conducted in either industrial
or academic environments, for which different techniques
were employed: formal experiment, survey, case study or
post mortem analysis. Lately, the interest to perform
objective comparisons has especially increased, principally
in aspects such as productivity and quality.

For example, Dyba and Dingsoyr [3] conducted a
systematic review of the Agile development methods. Their
review points out that three out of the four studies that
addressed the comparison of the productivity obtained by
Agile and traditional teams found out that using eXtreme
Programming (XP) resulted in increased productivity in
terms of LOC/h. Also, another study that focused on the use
of SCRUM in a very small company [6], which was not
included in the previous systematic review, reached, using
the same unit of measurement, the same conclusion as
regards productivity. However, we may argue that LOC is
not an appropriate measure to ensure an unbiased
comparison when comparing productivity because
experienced programmers have the capacity to summarize in
a short statement what novice programmers write in several
lines, thus the latter seem to yield a higher production.
Nevertheless, we also found out that a later systematic
review based on twenty eight very good papers [7] found
evidence of the increase in productivity when using the
SCRUM method.

Regarding product quality, most studies in Dyba and
Dingsoyr’s survey [3] reported increased code quality when
Agile methods were used. However, none of these studies
had an appropriate recruitment strategy to ensure an
unbiased comparison, and few quantitative measurements
were made, so there seemed to be little scientific support at

that moment to claim such improvement in code quality. In
addition, Sfetsos and Stamelos [8] conducted a survey on
Agile projects in which internal and external quality -based
on the ISO/IEC 9126 standard, which is the same standard
used in this article- were evaluated. The survey presented
forty six high quality empirical articles, twenty seven of
which had been developed in academic contexts. All the
articles of the industrial context, but one, described cases in
which Test-driven Development was applied, while
Test-first Development was used in the academic context.
The authors reported an improvement in external quality,
measured in terms of the number of defects and successful
external testing, but there was not the same evidence for the
internal quality of either Test-driven Development or
Test-first Development. Regrettably, due to the
characteristics of our study, it was not possible for us to
show evidence of improvement in external quality and our
conclusion on internal quality is similar to theirs.

In addition, some studies have been made on the
productivity of geographically distributed development. For
example, Sutherland et al. [9] reported that Xebia -a Dutch
company- started local projects with teams composed of
Dutch and Indian members. After obtaining local
hyper-productivity in the performance of a team working
with SCRUM in the Netherlands, they moved the Indian
members of that team into India. Their work in India, also
with SCRUM, was as productive as that in the Netherlands.
Based on this experience, Xebia has set a model for high
performance, distributed, offshore teams, which have
obtained one of the lowest defect rates in the industry.
Although their hyper-productive performance was defined
in terms of the comparison with only one external project, it
was an interesting example of geographically distributed
development. Another example of geographically
distributed development using SCRUM was reported, but
this time, a team of 4 persons did not get a significant
productivity improvement, if compared to the previous
phase of their project, in which a waterfall process had been
applied [10].

Besides, there was a longitudinal industrial study which
investigated the effects of SCRUM on software quality -in
terms of defects and defect density-, and studied the quality
assurance process [11]. The authors reported that they
followed a project over a three-year period; they used a
plan-driven process to compare the software quality
assurance processes and software defects of such project
during a 17-month phase, which was then followed by a
20-month phase, during which they used SCRUM to make
such comparisons. The results of the study did not show a
significant reduction of defect densities or changes of defect
profiles after SCRUM was used. Likewise, the same
conclusion had already been reached [6] in the context of a
very small company. Also, Hashmi and Baik [13] had
compared XP to a traditional method which was based on
the Spiral model. They did not find a significant difference
in the quality measured in Fault Rate (Faults/KLOC).

American Journal of Software Engineering and Applications 2014; 3(1): 1-11 3

Moreover, Mirakhorli et al. [14] applied a RDP technique
- an XP customization method – to the second version of the
Union Catalogue System – a virtual catalogue coordinated
by the National Library of Iran-. They reported that higher
quality and productivity results may be obtained if XP
practices are tailored, considering their project sizes,
contexts and capabilities.

Finally, it is interesting to mention that Goldin and Rudahl
[15] performed a comparative study (RUP versus XP) in
circumstances similar to those in which our empirical
experience was conducted. They found out that all the teams
understood their assigned processes, but the RUP teams
were more successful in applying the method. However, the
RUP teams were significantly more likely to say that they
would have preferred to use XP rather than their assigned
process, which is exactly what was said by the students that
participated in our empirical study. Nevertheless, the
quantitative measurements focused on software processes
did not show clear results in terms of productivity and
quality. Another interesting article we should highlight is
one which deals with a different approach: the use of a
hybrid process which took some characteristics from RUP
and others from SCRUM. In this case, the requirements and
architectural specifications were written following the RUP
method, and the Programming, Testing and Deployment
were performed according to the SCRUM method. The
authors reported an improvement in productivity when this
hybrid method was applied [16].

To conclude, the related work described above shows an
increase in productivity and external quality when using
Agile methods but, as regards internal quality, there is no
evidence of such an improvement, which is similar to what
is being reported by our empirical study.

3. Empirical Study
Our empirical study was developed in the context of a

design workshop that is part of the curriculum of the
Software Engineering degree offered by the School of
Engineering of Universidad Austral (Argentina). We
followed the recommendations of [17, 18] to develop this
empirical experience. Besides, to present this study and its

replications, the guidelines for reporting empirical research
in software engineering in [19] were followed as closely as
possible.

We will now present the planning of our study, its
execution, and the results we obtained, with an explanation
of the threats to validity. Finally, there will be a discussion
of the results obtained.

3.1. Planning

The planning stage of our empirical study will be
presented by defining our goal, explaining how the study
was designed and describing the characteristics of its
execution.

3.1.1. Goal
The goal of our empirical study was to make an empirical

evaluation of how significant the improvement in
productivity and quality may be when applying Agile
software development methods, if such results are compared
to those obtained when using traditional methods.

To clarify this goal, the Goal-Question-metric paradigm
was applied [20]. Table 1 shows the results of its application,
where the measures used to compare the methods are listed.

It is important to highlight that the ISO/IEC 9126 standard
[21] defines Usability in terms of five sub-characteristics:
Understandability, Learnability, Operability, Attractiveness,
and Usability Compliance. Usability Compliance refers to
the capability of the software component to adhere to
standards, conventions, style guides and regulations relating
to Usability. In our study, these characteristics were
evaluated by asking a set of questions of the users.

In order to measure the Maintainability of an application,
Parnas [22] introduced the idea of considering the number of
affected modules when a change is proposed. Chaumun et al.
[1] assessed the changeability of an object-oriented system
by computing the impact of the changes made to the classes
of the system. We applied the same concept, but in a simpler
manner: every class that was modified by a change was
counted. The only exception was the addition of a sub-class,
as this was considered an extension of the functionality of
the class and, due to the advantages of polymorphism, the
pre-existing code was not modified.

Table 1. Goal-Question-metric paradigm application.

Questions Answer Metric

Which are the most representative Agile
methods?

SCRUM and XP are the Agile methods that yield
more empirical evidence, which facilitates the
comparison of the results [9].

--

Which are the traditional methods?
RUP is a unified method that has all the
characteristics of a traditional method.

--

Which are the characteristics and
sub-characteristics of quality defined in
the ISO/IEC 9126-1 standard that are
relevant for the comparison of the
selected methods?

Functionality: Accuracy
Usability: Understandability, Learnability,
Operability and Attractiveness
Maintainability: Changeability

Number of Failures reported
Degree of usability
Number of classes modified when a requirement
change is made
Degree of understanding of the design

What is productivity in a software
development project?

Productivity = Size/Effort Number of Transactions

4 Gabriela Robiolo and Daniel Grane: Do Agile Methods Increase Productivity and Quality

Another aspect that may affect the maintenance task is the

Degree of understanding of the design (DUD). In our study,
this was measured by a set of questions which the developers
were asked to answer. In a similar manner, Deligiannis et al
[23] included a set of questions in an empirical investigation,
as a complement of the maintainability test, which captures
the participant’s personal opinions regarding the
architectural aspects of a system, as well as about the
modification tasks.

The main difference between this test and ours is that the
participants of their empirical investigation did not develop
the product, they only evaluated it.

Productivity was also an important aspect to be
considered. As all the projects in our study took the same
time to be developed, to compare the productivity of the
projects, we only had to consider size. To measure size, the
concept Transaction (T) [24] was used, but in this case, it
was applied to the final implemented product. Each
transaction was identified from the stimulus triggered by the
actor into the system, so the functional size was calculated as
the number of stimuli in the final product. It is important to
note that a T “transaction” has a finer granularity, if it is
compared to that of a Function Point (FP) transaction; a FP
transaction may be equal to one or more T “transactions”.
Besides, T has the advantage that it may be applied to game
applications.

3.1.2. Design
To measure productivity and quality improvement in

software development, we decided to divide our advanced
students into seven teams which had to develop a product,
using a given developing method in a limited time.

To form the groups, there were two alternatives: either to
randomly select members or to form groups of members
who had similar capabilities. Although all the students were
advanced, their levels of performance were different, so the
second strategy was adopted to form balanced groups. To
evenly distribute the people into the groups, the following
parameters were considered:

(1) Academic performance: the final mark the students
had obtained in the prerequisite course was considered.

(2) Experience: number of months they had worked in the
industry or in software development labs.
(3) Academic workload: number of courses being attended
at that moment and the number of final exams each student
still had to sit for.

The developing method - RUP, SCRUM or XP- was
randomly assigned to each team.

RUP is the framework which resulted from the unification
of different approaches to software development, including
the use of UML. It is iterative, incremental,
architecture-focused and based on use cases. The process is
organized into four phases: initiation, development,
construction, transition, and into five processes:
requirements capture, analysis, design, implementation and
testing. It provides a disciplined approach to defining roles,
activities and deliverables. It can be used in large or small

organizations, and in formal or informal ones. Besides, it can
be used with different management styles because this
approach is flexible [25].

On the other hand, SCRUM is an Agile method which is
focused on project management. When using this method,
software development is performed by a group, during time
intervals called "sprints". Each sprint will produce a product
increment, which will start with the sprint planning and end
with the product increment review. The main roles in
SCRUM are: the “SCRUM master”, who is the supplier of
the process, the “Product Owner”, who represents the
stakeholders and the business, and the “Team”, which is a
dynamic and self organized group of about seven people
who do the developing task. The Product owner defines the
set of requirements that should be implemented, which
defines the product “backlog”. The Product Owner gives
priority to the different requirements and the team
determines which of such requirements may be completed
during the next sprint, and records this in the sprint backlog.
Group members coordinate their work during a daily stand
up meeting [26].

Likewise, XP [14] is an Agile method that is defined by a
set of rules which characterize it. These rules may be
summarized as follows: continuous testing, clearness and
quality of codes, common vocabulary, authority to be shared
by everybody and at least two people have the understanding
necessary to do any task, Test-First Programming is done in
pairs.

Table 2 summarizes the main differences between RUP
and the Agile methods.

The professor who ran the workshop designed the tasks to
be performed by the students. Different tasks were planned
for each type of method, RUP or Agile, as presented in Table
3. It is important to note that all the students had to use a
Vision Report [12] and a requirements definition, no matter
which method they used.

In order to measure the differences between products, we
selected the following variables: accuracy, usability,
changeability and functionality. Table 4 shows the variables
involved in the empirical experience and the measure used
to measure them. We considered it was necessary to control
the following co-factors:

(1) Development environment: all groups worked in
similar development environments and used computers with
similar specifications.

(2) Time: all the groups worked during the set time.
(3) Level of training: all the students had received similar

initial training in each specific topic, and those students who
had previous experience in each specific topic were
distributed in a balanced way.

(4) Product complexity: the professors controlled the
complexity of each product in order to prevent distortions in
the developed products. For example, for the game product,
a set of complexity rules was defined.

Once the study had been designed, we wrote the
following research questions, whose answers would tell us if

American Journal of Software Engineering and Applications 2014; 3(1): 1-11 5

there are differences in productivity and quality when using
RUP and Agile methods:

(1) Is the number of F reported from the application of an
Agile method bigger than that obtained when using the RUP
method?

(2) Is the DU analyzed for RUP greater than that in Agile?

(3) Is the number of MC resulting from the application of
an Agile method bigger than that obtained when using the
RUP method?

(4) Is the DUD in RUP team members greater than that in
Agile team members?

(5) Is the size, measured in number of T, of a final product
developed with an Agile method bigger than that obtained
with a RUP method?

Table 2. Comparison between RUP and the Agile methods.

Aspect RUP Agile Methods

Client
Defines and approves the
requirements. Validates the system.

Integrates the development team. Defines priorities.

Strength of the work group Lies on the process Lies on the people
Architecture Architecture centered Gives importance to code

Requeriments Use cases
The method to be applied is not explicitly stated, but the method most widely
used is User Stories

Documentation
Consists of an adequate selection of
artifacts

Included in the code

Testing Is a discipline The automated test is essential, it completes the requirements definition

Project management Is a discipline
The importance of this aspect is not explicitly defined, but results show that
when applying the Agile methods, the management control improves

Project size Small, medium and large Software release
Team size Not defined About 10 people

Table 3. Tasks to be performed/ artifacts to be developed.

Method Task

RUP

Artifacts developed (Vision Report, Use cases, Class
Diagram, Sequential Diagrams, External design, Design of
test cases)
Programming and testing

SCRUM
and XP

Artifacts developed (Vision Report, Users Stories)
Programming and testing

Table 4. Variables measured.

Variables Measure Comment

Accuracy
Number of Failures
reported (F)

Usability
Degree of usability
(DU)

Number of very low, low,
acceptable, high, and very high
answers

Changeabi
lity

Number of classes
modified when a
requirement change
was made (MC)

The anonymously nested classes
implemented in Java were not
taken into account

Degree of
understanding of the
design (DUD)

Number of clear, confusing and
misleading answers

Functional
size

Number of
Transactions (T)

Number of stimuli dispatched
from the actor to the system,
measured in the final product

3.2. Execution

Advanced students, who were the experimental subjects,
were divided into seven groups: 3 used RUP, 1 SCRUM, and
3 XP. These projects were developed in a four-year period;
not all of them were done at the same time. Table 5 shows
the capabilities of the experimental subjects.

The descriptions of the developed products, i.e. the
experimental objects, are shown in Table 6.

The professors played the role of leaders, owners and
clients. The only exception was P3, in which the client role
was played by the students. In every product the students
played the role of developers. Table 7 shows the roles
played.

The projects were developed by the students during an
academic year, at the end of which, the students and
professors measured the following measures in the context
of a final assessment:

(1) CMC: a set of changes to be made to their final
product was defined by the professors. Students examined
the changes and identified the class that would be affected
by these changes.

(2) DUD: the students involved in the empirical
experience answered a set of questions. The product
characteristics were considered to design such questions.

(3) T: the professors measured the final products.
The measures F and DU were discarded. As regards the

first variable, it was found out that the products had been
developed up to a level in which no failures had been
reported since, prior to delivery, the products had been
tested and the errors corrected. The second variable was
ruled out because of the limitations imposed to keep the
complexity of the products at a comparable level, which
obliged the participants to develop products of similar
external designs.

Table 8 shows the changes proposed to measure MC and
Table 9 shows the questions made to evaluate the DUD of
the product.

Table 10 shows the number of weeks set per task. All the
products used a Vision Report [12] and a use case
description for requirements definition or user stories. P1

6 Gabriela Robiolo and Daniel Grane: Do Agile Methods Increase Productivity and Quality

and P2 used the same Vision Report and Use Case textual
description.

As an example, and in order to highlight the differences
between Agile and traditional methods, Fig. 1 shows a
comparison of the use of time made by P2SCRUM and P1RUP .

3.3. Results

The values obtained when the above mentioned variables
were measured are shown in the following sub-sections.

Table 5. Experimental subjects’ capability.

Member
of group

Final mark
obtained in
prerequisite

course

Work
experience
(in months)

Number
of

pending
final

exams

 Courses
being

attended

P11 9.5 3 1 7

P12 4 12 5 6

P13 9 4 1 7

P21 7 5 6 8

P22 6.5 0 5 7

P23 7.5 5 7 5

P24 8.5 12 4 6

P31 6.5 0 0 7

P32 6 0 1 8

P33 4 0 3 7

P34 8 0 0 7

P41 6 0 5 6

P42 7 0 5 7

P43 6.5 3 2 7

P51 8 12 0 7

P52 7 3 1 7

P53 7 6 1 9

P54 7 0 0 7

P61 5 8 9 4

P62 4 7 4 6

P63 8 7 1 7

P64 5 6 1 9

P71 7 10 0 8

P72 6 18 8 5

P73 6 0 4 7

P74 8 0 0 7

Table 6. Description of the experimental objects.

Product Method Year Description

P1 RUP 2008 Turn-based strategy game

P2 SCRUM 2008 Turn-based strategy game

P3 XP 2010 Social network

P4 RUP 2010 Social network

P5 XP 2011 3D Social network

P6 RUP 2011 Social network

P7 XP 2011 Social network

Table 7. Roles played

Method Role Performer

P1, P4 and P6 Team leader Professor

P1, P4 and P6 Developers Students

P1 Client Professor

P4 and P6 Client Students

P2 SCRUM master Professor

P2 Developers Students

P2 Owner-Client Professor

P3, P5, P7 Clients Students

P3, P5, P7 Owner Professor

P3, P5, P7 Developers Students

Table 8. Proposed changes.

Project Proposed Change

P1 and P2

Place more than one troop in a square.
Assign multiple improvements to the troops.
Create a new special unit that has the ability to build
settlements.
Incorporate multiple end-game conditions.
Insert a stage of buying and selling resources between
shifts.

P3

Make the system limit the number of users that can
answer a survey, and do not allow the user to modify such
limit.
Make the system limit the number of users that can
answer a survey, but allow the user to modify such limit.
Reject the answer given to a survey.
Verify that no poll with the same name has been created
before.
Unsubscribe fake users (SPAM).
Vary the condition to accept a survey.

P4

Enable more than one person to own a site.
Unsubscribe fake users (SPAM) and cleanse the system of
their activities
Add a new strategy to recommend sites.
Divide the system into regions.
Incorporate a contact address book and invite your
contacts to contact you.
Add a new site from a cell phone, according to current
geographical location.

P5

Add an avatar/person to the world (3 avatars/persons).
Visit your friend’s home when she/he is present.
Add a characteristic to an avatar/ person (run).
Add a new scenario.
Add a new type of message for a sub-set of your friends.

P6

Add a new filter.
Show the historical list of messages from your friends.
Query messages using several categories.
Chat (direct messages).
Query tweets sent exactly a year ago.

P7

Add the right of admission.
Notify an interest group of the news about a certain type
of event.
Create an event for a specific family.
Add a chat facility.
Use the same system to organize a football tournament.

3.3.1. Changeability
Table 11 shows the number of classes affected by the

changes outlined in the previous section, in Table 8. The
mean was 9 MC for the RUP-developed projects and the

American Journal of Software Engineering and Applications 2014; 3(1): 1-11 7

mean standard deviation was 1 MC. In the case of Agile
methods, the mean was 11.25 MC and the standard deviation
was 3.86. The differences between the values obtained for
the RUP and Agile methods were not significant, with the
exception of P2 -which had been made with SCRUM-,
which proved to be the weakest design.

Table 12 shows the responses to the questions listed in
Table 6. Responses were classified into clear, confusing and
misleading. The P4 group did not respond all the questions
because there was not enough time to do so, so the professor
selected only some questions to be asked of each of those
students.

Table 13 shows the statistical analysis of the responses.
The mean of the Agile clear responses was bigger than that
of the RUP responses. The standard deviation of the Agile
responses was similar to that of the RUP responses in the
case of the clear responses, while they were bigger than
those of RUP’s in the case of the confusing and misleading
responses. In any case, these differences did not show a
significant difference in the degree of understanding of the
designs.

Table 9. Questions to evaluate the degree of understanding of the product
design.

Project Questions

P1 and
P2

How does the system implement the take over of resources?
How does the system implement the take over of a source of
resources?
How does the system implement the movement of troops?
How does the system implement the game over?
How does the system implement a combination of troops?
How does the system implement an attack?
How does the system implement the construction of a troop?
How does the system implement improvements in a troop?
How does the system implement the exploration of
mysterious places?
How does the system implement improvements in a
settlement?
How does the system implement the creation of a new game?
How does the system implement the completion of a game?
How does the system implement the online upgrade of the
game?
How does the system implement the visualization and
rendering of the map?
How does the system implement the overall control of the
game?

P3

How does the user accept a notification?
How does the user add a survey?
How does the system add a user?
How is a user deleted?
How is a survey answered?
How is the profile of an owner defined, as opposed to that of
a visitor?
What design pattern was used in the Qnet implementation?
What is the criterion for listing surveys?
How does the connection to the database work? What are the
layers of the system?

P4

How did I save the users’ tags?
How is the recommendation of the places made?
How is a discount added?
Where are the contents uploaded by users stored?
What would happen to the system if there were thousands of
comments about only one place?
How is a complaint from a place implemented?

Project Questions
How does the system validate a user input?
What URL encoding strategies are used?
How does the system filter search results?
How does the system manage authentication and
authorization?

P5

How does the system implement the synchronization of the
avatar/persons?
How does the system implement the connection to the
database?
What is the avatar world?
How does the system implement “the avatars walking in the
world”?
How does the system implement the “bulletin board”?

P6

How does the system implement the connection to the
database?
How does the system implement the synchronization with the
cellular phone?
Describe the API structure.
How does the system implement the messages update?
How do the clients migrate to other devices?

P7

How does the system implement the connection to the
database?
How does the system notify of a change in an event?
How does the system implement the interest groups?
How does the system implement the algorithm that suggests
friends?
How does the system processes the answers from other users?

Table 10. Weeks allotted per task.

Project Task Weeks

P1RUP

Artifacts development (Vision Report, Use cases,
Class Diagram, Sequential Diagrams, External
design, Design Test)
Programming

13

19

P2SCRUM
Artifacts development (Vision Report)
Programming

5
27

P3XP
Artifacts development (Vision Report and User
stories)
Programming

4

28

P4 RUP

Artifacts development (Vision Report, Use cases,
Class Diagram, Sequential Diagrams, External
design, Design Test)
Programming

17

15

P5 XP
Artifacts development (Vision Report and User
stories)
Programming

5

28

P6 RUP

Artifacts development (Vision Report, Use cases,
Class Diagram, Sequential Diagrams, External
design, Design Test)
Programming

16

16

P7 XP
Artifacts development (Vision Report and User
stories)
Programming

5

28

Table 11. Number of classes affected by the changes.

Project Product MC

P1RUP P1 8

P2SCRUM P2 17

P3XP P3 9

P4 RUP P4 9

P5 XP P5 9

P6 RUP P6 10

P7 XP P7 10

8 Gabriela Robiolo and Daniel Grane: Do Agile Methods Increase Productivity and Quality

Figure 1. Comparison of the use of time made by P2SCRUM and P1RUP.

Table 12. Responses used to determine the degree of understanding of the
designs.

Group Response

 clear confusing misleading

P1RUP 35 4 6

P2SCRUM 28 19 13
P3XP 39 1 0

P4 RUP 12 5 0
P5 XP 14 5 0

P6 RUP 18 2 0

P7 XP 18 2 0

Table 13. Statistical analysis of the responses used to determine the
degree of understanding of the designs.

Statistical Analysis
Response

clear confusing misleading

RUP mean 21.67 3.67 2.00

RUP standard deviation 11.93 1.53 3.46

Agile mean 24.75 6.75 3.25

Agile standard deviation 11.18 8.34 6.50

3.3.2. Functional Size
Table 14 shows the functional size of each product

measured in T. The mean functional size was 7 T for the
RUP-developed projects, and the standard deviation was 1 T.
For the Agile methods, the mean functional size was 30.5 T,
and the standard deviation was 17.82 T. These values are
significantly bigger than the RUP values.

Tabla 14. Functional size.

Project Product Measure [T]
P1RUP P1 8

P2SCRUM P2 10
P3XP P3 23

P4 RUP P4 6
P5 XP P5 51
P6 RUP P6 7
P7 XP P7 38

3.4. Answer to Research Questions

After having analyzed our results, we may answer our
research questions:

(1) It was not possible to verify if there was a difference
in the F reported by the users of Agile and RUP methods, as
none reported any failure.

(2) It was not possible to verify if there was a significant
difference in the DU analyzed for RUP when compared to
that obtained with Agile methods, as the external designs
were similar.

(3) There was not a significant difference in the number
of MC obtained when applying an Agile method when
compared to that obtained when using the RUP method.

(4) There was not a significant difference between the
DUD obtained for RUP and Agile, a result that surprised us
because RUP is an architecture-centered method.

(5) The size, measured in number of T, of a final product
developed with an Agile method was similar to, or bigger
than, that resulting of a RUP product.

3.5. Threats to Validity

Four different types of validity will be discussed: internal,
external, construct, and conclusion [18].

(1) Internal. Internal validity concerns the cause-effect
relationship, that is, if the measured effect is due to changes
caused by the researcher or due to some other unknown
cause. In this case, it would mean that any measured
difference between the applied methods would not be due to
the method.

One of the biggest concerns when designing this study
was for the products to be obtained to be comparable, that is,
that they should have a similar level of complexity. For the
game products (P1 and P2), it was necessary to write a set of
specific rules in order to avoid non-comparable
developments. For example, the time spent on the graphical
interface was limited to that required to achieve the
minimum necessary level to understand the product, so the
products showed similar graphical interfaces. In the case of
P3-P7, for which social networks were developed, the
biggest difference was the developing environment, which
was controlled by the professor, who led the students to the
same level of training in every environment. Besides, the
applications may be considered comparable, because both
methods were used to develop applications of either one of
these two types: game product or social network.

Although the groups were formed in a manner as balanced
as possible, it is clear that there are personal factors that are

American Journal of Software Engineering and Applications 2014; 3(1): 1-11 9

difficult to control. For example, the personal attitude of a
person in a certain situation may lead the other members to
enhance some of their own personal characteristics, thus
resulting in the whole group improving its behavior. Despite
this limitation, which is inherent to working with people, the
groups had different but comparable behaviors.

(2) External. The external validity of a study describes the
possibility to generalize its results. The limited number of
projects and measurements does not allow us to generalize
our results. However, we think that it was a good experience,
which could be replied in academic and industrial software
development environments in order to obtain generalized
conclusions.

(3) Construct. The construct validity reflects the ability to
measure what the researchers are interested in measuring. In
this case, the objective was to measure the difference, in
terms of productivity and quality, between traditional and
Agile methods. It is possible to wonder if the selected
variables were suitable to satisfy the purpose of the
empirical study. To deal with this limitation, the QGM
approach was applied. Also, the measures were selected by
giving priority to objectivity and feasibility of measurement,
focusing on the internal and external features of the obtained
products.

(4) Conclusion. The conclusion validity describes the
ability to draw statistically correct conclusions based on
measurements. In this experience, the limited available data
did not allow us to reach statistically significant conclusions.

4. Discussion
If we want to get an objective idea of the functional size

differences between the products developed with the
different methods, we have to consider the information we
obtained about the weeks spent on programming tasks,
which is presented in Table 10, and the characteristics of the
persons included in each team, which are described in Table
5. The groups were made up by three or four persons and the
best possible combination was sought for, within the
restrictions that we had. Also, in these beginner
programming teams, we could see that the more people there
were on a team, the more coordination problems they had.

The Agile teams began to work in programing tasks no
later than in the fifth week, but the RUP teams began to do
so between the fifteenth and nineteenth week. So, the Agile
groups worked in programming almost twice the time the
RUP groups did, but they produced products which had very
different functional sizes: from almost similar to that of a
RUP product, to three times, or even seven times, bigger
than that of a RUP product. We noticed that this increment in
productivity was a consequence of the student s’
involvement in the planning, estimation and control
activities in each sprint. This practice reinforced the
commitment and the responsibility of each student and
favored the leaders’ development, which also contributed to
motivate the team.

This shows that Agile groups are usually more productive,
but their outcome may have a bigger standard deviation.

One factor that could have produced the dispersion in
Agile productivity is pair programming. We believe
productivity could be increased by pair programming in XP
teams. However, it is important to note that although the
premise the students had been given was always to work
with pair programming, in fact, they only worked in pairs
when the nature of the task justified this type of work. And
of course, they did not work in pairs when someone was
absent, or delayed, or if for some specific reason, someone
worked at home. This type of behavior was also observed by
Zazworka et al. [27], so we may conclude that although pair
programming is the best option to work, it has to be applied
in a flexible manner. Besides, it depends on the persons
involved in the task to be done; some people enjoy working
in pairs, while others do not.

Moreover, there may be other causes that may explain
Agile productivity dispersion. For example, it would be
interesting to measure, in order to deeply understand, how
motivation may affect the development of a project. In our
study, it may have been revealing to learn about the
students’ and leaders’ commitment and motivation, as well
as about the leaders’ experience in development.

As regards quality, it was not possible to identify
significant differences in accuracy, usability and
changeability. Actually, the fact that no failures were
reported and that the products had similar degrees of
usability was a consequence of the conditions we set for the
students’ products to comply with the academic requisites.

Particularly, it was surprising to see that the Agile
methods did not improve changeability, something which is
claimed by the developers that use these methods. The
reason for this may be that in the context of the ISO/IEC
9126-1 [21] standard, changeability is one of the
subcharacteristics of maintainability, not the response given
to a client when he/she proposes a requirement change. In
fact, we defined the measures MC and DUD to measure the
changeability that affects the maintenance phase of a
product. So the analysis of the results of such measurement
shows there will not be significant differences in the future
life of a product, whether a RUP or an Agile method is
applied, which is ,in fact, an interesting conclusion.

We may wonder if the selection of the three quality
variables was appropriate, as we did not obtain a significant
difference when applying the different methods, either RUP
or Agile. While planning the empirical study we did not
realize that the conditions defined in order to accept the
products would not contribute to clarify the differences that
the use of these methods would bring about regarding two of
the quality characteristics -accuracy and usability-. So, we
may suggest not including these two variables in future
replications in academic contexts. However, in spite of the
fact that the variable changeability was well selected and
measured, this sub characteristic is not enough to evaluate
the quality an industrial product. Reliability, portability, and
efficiency may be key aspects for the marketing of a

10 Gabriela Robiolo and Daniel Grane: Do Agile Methods Increase Productivity and Quality

software product and it would have been interesting to
consider them. To conclude, we have not found evidence in
an academic context that Agile methods improve quality
characteristics, but this conclusion does not necessarily
apply to an industrial context.

Finally, to answer the question: do Agile methods
increase productivity and quality?, we may say that in the
context of our empirical study, they significantly increased
productivity, but not quality. In our case, the circumstances
that affected productivity were the time allotted to
programing tasks, the application of pair programming
practices, the planning, estimation and control practices and
the leadership growth. On the other hand, quality was not
improved by the Agile methods because they do not
introduce practices that differ from those of traditional
methods; in fact, the quality results were affected by the
people involved in each team, the circumstances defined in
order to make the products comparable and the limitations of
the academic context in which the study was developed.

5. Final Conclusion

This empirical study, conducted in an academic
environment, has helped us understand how the selection of
a traditional or an Agile software development method may
impact on the productivity and quality of a software project.
By applying a traditional method, we managed to obtain a
more reproducible result, but we could not obtain proof of an
improvement in quality. On the other hand, in our study
there was evidence about obtaining higher productivity by
using Agile methods. However, it would be recommendable
to analyze the circumstances that produced the difference in
productivity with the Agile methods, focusing our analysis
on the motivation and commitment of the developers and
leaders, and on the leaders’ experience.

In the future, it would be recommendable to replicate this
study in an industrial environment, where junior and senior
developers may work together, and to evaluate in a longer
period of time if Agile methods lead to increased
productivity and quality in software development.

Acknowledgments
Our thanks to the Research Fund of Austral University,

which made this study possible.

References
[1] M. A. Chaumun, H. Kabaili, R. K. Keller and F. Lustman,

A Change Impact Model for Changeability Assessment in
Object-Oriented Software Systems, csmr, Third
European Conference on Software Maintenance and
Reengineering, (1999), pp.130.

[2] S. Nerur, R. Mahapatra and G. Mangalaraj, Challenges of
migrating to agile methodologies. Commun. ACM 48, 5
(May 2005), 72-78. DOI=10.1145/1060710.1060712
http://doi.acm.org/10.1145/1060710.1060712.

[3] T. Dyba and T. Dingsøyr: Empirical Studies of Agile
Software Development: A Systematic Review, Inform.
Softw. Technol (2008).

[4] M. Hirsch, Moving from a plan driven culture to agile
development, in Proceedings of the 27th international
Conference on Software Engineering (ICSE '05) (St.
Louis, MO, USA, May 15 - 21, 2005). ACM Press, NY,
38-38.

[5] T. Dingsøyr, S. Nerur, V. Balijepally, N. Brede Moe, A
decade of agile methodologies: Towards explaining agile
software development, Journal of Systems and Software,
Volume 85, Issue 6, (June 2012), pp. 1213-1221, ISSN
0164-1212, http://dx.doi.org/10.1016/j.jss.2012.02.033.

[6] E. Caballero, J.A. Calvo-Manzano and T. San Feliu,
Introducing Scrum in a Very Small Enterprise: A
Productivity and Quality Analysis, Systems, Software and
Service Process Improvement, Communications in
Computer and Information Science Volume 172, (2011),
pp. 215-224.

[7] E. S. F. Cardozo, J. B. F. Araújo Neto, A. Barza, A. C. C.
França, and F. Q. B. da Silva, SCRUM and productivity
in software projects: a systematic literature review, in
Proceedings of the 14th international conference on
Evaluation and Assessment in Software Engineering
(EASE'10), Mark Turner and Mahmood Niazi (Eds.),
British Computer Society (Swinton, UK, UK,
2010),131-134.

[8] P. Sfetsos and I.Stamelos, Empirical Studies on Quality
in Agile Practices: A Systematic Literature Review,
Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference,
(Porto, Sept. 29 2010-Oct. 2 2010),44 – 53.

[9] J. Sutherland, G. Schoonheim, M. Rijk, Fully Distributed
Scrum: Replicating Local Productivity and Quality with
Offshore Teams, Hawaii International Conference on
System Sciences (2009), pp. 1-8, 42.

[10] L. Lavazza, S. Morasca, D. Taibi and D. Tosi, Applying
SCRUM in an OSS Development Process: An Empirical
Evaluation, Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business
Information Processing Volume 48, 2010, pp 147-159.

[11] J. Li, N. B. Moe, and T. Dyba˚, Transition from a
plan-driven process to Scrum: a longitudinal case study
on software quality, in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM '10),
ACM Article 13, (New York, NY, USA, 2010), 10 pages.

[12] K. Bittner and I. Spence, Use Case modeling
(Addison-Wesley, 2003).

[13] S.I. Hashmi, J.Baik, Software Quality Assurance in XP
and Spiral - A Comparative Study International,
Conference on Computational Science and its
Applications, (ICCSA 2007), (2007), 367 - 374

[14] M. Mirakhorli, A. Khanipour Rad, F. Shams, M. Pazoki,
and A. Mirakhorli, RDP technique: a practice to
customize xp, In Proceedings of the 2008 international
workshop on Scrutinizing agile practices or shoot-out at
the agile corral (APOS '08), ACM, (New York, NY, USA,
2008), 23-32.

American Journal of Software Engineering and Applications 2014; 3(1): 1-11 11

[15] S.E Goldin and K.T Rudahl, Software process in the
classroom: A comparative study, 9th International
Symposium on Communications and Information
Technology (ISCIT 2009), (28-30 Sept. 2009), 427 – 431.

[16] W.C. de Souza Carvalho, P.F. Rosa, M. dos Santos
Soares and M.A. Teixeira da Cunha Junior, A
Comparative Analysis of the Agile and Traditional
Software Development Processes Productivity, Computer
Science Society (SCCC), 2011 30th International
Conference of the Chilean, (2011), 74 – 82.

[17] N. Juristo, and A.M. Moreno, Basics of Software
Engineering Experimentation, Kluwer Academic
Publishers, 2001.

[18] C.Wohlin, P.Runeson, M.Höst, M.C.Ohlsson, B. Regnell,
and A. Wesslen, Experimentation in Software
Engineering: an Introduction, Kluwer Academic
Publisher (2000).

[19] Jedlitschka, M. Ciolkowoski, D. Pfahl, Reporting
Experiments in Software Engineering, In Guide to
Advanced Empirical Software Engineering (2008).

[20] Basili, G. Caldiera and D. Rombach, The Goal Question
Metrics Approach, Encyclopedia of Software,
Engineering, Wiley, 1994.

[21] ISO/IEC, ISO/IEC 9126-1 Software engineering- Product
quality- Part 1: Quality model, 2001.

[22] Parnas, D.L., On the criteria to be used in decomposing
systems into modules, Communications of the ACM.
Volume 15, Issue 12 (December 1972) 1053 – 1058

[23] Deligiannis, M. Shepperd, M. Roumeliotis, and I.
Stamelos, An empirical investigation of an
object-oriented design heuristic for maintainability. J.
Syst. Softw. 65, 2 (February 2003), 127-139.

[24] G. Robiolo, C. Badano and R. Orosco, Transactions and
Paths: two use case based metrics which improve the
early effort estimation, In Proceedings of 3rd Int. Symp.
on Empirical SW Engineering and Measurement (ESEM
2009) (October S., Lake Buena Vista, Florida, 2009),
15-16.

[25] Jacobson and B. Grady, J. Rumbaugh, The Unified
Software Development Process, (Addison Wesley, 1999)

[26] K. Schwaber, Agile Project Management with Scrum.
Microsoft Press (2004).

[27] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili,
and K. Schneider. Are developers complying with the
process: an XP study, in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM '10).
ACM, Article 14 (New York, NY, USA, 2010), 10 pages.

